
Slovak University of Technology in Bratislava
Faculty of Informatics and Information Technologies

Programmer’s Activity Acquisition
and Persistence in Eclipse

Semestral Project

Authors: Samuel Molnár and Pavol Zbell
Field: Information Systems
Course: Object-Oriented Analysis and Design of Software Systems
Supervisor: Ing. Ivan Polášek, PhD.

May 2014

Contents

1 Introduction 1
1.1 Domain Model . 1

2 Model Diagrams 2
2.1 Use Case Diagrams . 2

2.1.1 Eclipse Startup . 2
2.1.2 Eclipse Shutdown . 4
2.1.3 Event Processing . 6

2.2 Sequence Diagrams . 8
2.2.1 Eclipse Startup . 8
2.2.2 Registering Listeners on Startup . 10
2.2.3 Listener Resolution . 12
2.2.4 Listener Registration . 14
2.2.5 Commit Event Processing . 16
2.2.6 Watcher Service Operation Execution 18

2.3 Activity Diagrams . 20
2.3.1 Git Committing . 20
2.3.2 Document Editing . 22

2.4 State Diagrams . 24
2.4.1 Listener Service Lifecycle . 24
2.4.2 Listener Lifecycle . 26

3 Design Patterns 28
3.1 Pattern Catalog . 28
3.2 Component Overview . 29
3.3 Core Services . 32

3.3.1 Builder . 32
3.4 Core Factories . 34

3.4.1 Abstract Factory . 34
3.5 Core Facades . 36

3.5.1 Facade . 36
3.6 Core Persistence . 38

Contents

3.6.1 Memento . 38
3.6.2 Serialization Proxy . 38

3.7 Core Listener Provider . 40
3.7.1 Composite . 40
3.7.2 Flyweight . 40

3.8 Core Utilities . 42
3.8.1 Abstract Factory . 42
3.8.2 Enum Singleton . 42
3.8.3 Proxy . 42
3.8.4 Singleton . 42

3.9 Java DOM Compatibility . 44
3.9.1 Abstract Factory . 44
3.9.2 Enum Singleton . 44

3.10 Java DOM Node Paths . 46
3.10.1 Strategy . 46

3.11 Java DOM Node Filters . 48
3.11.1 Strategy . 48

3.12 Java DOM Node Transformations . 50
3.12.1 Enum Singleton . 50
3.12.2 Strategy . 50

3.13 Reflective Lookup . 52
3.13.1 Builder . 52

3.14 Class Resolvers . 54
3.14.1 Composite . 54
3.14.2 Enum Singleton . 54

3.15 Optionals . 56
3.15.1 Null Object . 56
3.15.2 Optional . 56
3.15.3 Singleton . 56

4 Conclusion 58
References . 59

List of Figures

2.1 Use Case Diagram – Eclipse Startup . 3
2.2 Use Case Diagram – Eclipse Shutdown . 5
2.3 Use Case Diagram – Event Processing . 7
2.4 Sequence Diagram – Eclipse Startup . 9
2.5 Sequence Diagram – Registering Listeners on Startup 11
2.6 Sequence Diagram – Listener Resolution 13
2.7 Sequence Diagram – Listener Registration 15
2.8 Sequence Diagram – Commit Event Processing 17
2.9 Sequence Diagram – Watcher Service Operation Execution 19
2.10 Activity Diagram – Git Committing . 21
2.11 Activity Diagram – Document Editing . 23
2.12 State Diagram – Listener Service Lifecycle 25
2.13 State Diagram – Listener Lifecycle . 27

3.1 Component Diagram – Core Overview . 30
3.2 Component Diagram – UACA and Java DOM Overview 31
3.3 Class Diagram – Core Services Builders Type Hierarchy 33
3.4 Class Diagram – Core Factories . 35
3.5 Class Diagram – Core Facades . 37
3.6 Class Diagram – Code Persistence . 39
3.7 Class Diagram – Core Listener Provider 41
3.8 Class Diagram – Core Utilities . 43
3.9 Class Diagram – Java DOM Compatibility 45
3.10 Class Diagram – Java DOM Node Paths 47
3.11 Class Diagram – Java DOM Node Filters 49
3.12 Class Diagram – Java DOM Node Transformations 51
3.13 Class Diagram – Reflective Lookup . 53
3.14 Class Diagram – Class Resolvers . 55
3.15 Class Diagram – Optionals . 57

List of Tables

2.1 Use cases at Eclipse Startup . 2
2.2 Use cases at Eclipse Shutdown . 4
2.3 Use cases of Event Processing . 6

List of Examples

3.1 Listeners facade as an access to core services 36
3.2 SerializationProxy as a protection for ListenerPersistenceData 38
3.3 StandardListenerProvider as an implementation of flyweight factory 40
3.4 PathNameStrategy as a namespace for node path naming strategies 46
3.5 AbstractBuilder as a skeletal implementation for AbstractLookup builders 52
3.6 CompositeClassResolver as a root of composable class resolving mechanism 54
3.7 DefaultClassResolver as an enum singleton 54

1 Introduction

In this work, we analyze an existing software system for acquisition and persistence of
programmer’s activities in an integrated development environment – PerConIK Eclipse
Intergration1. As the name indicates, this software is a part of the PerConIK 2 (Personalized
Conveying of Information and Knowledge) [2] research project and built as an extension
atop the Eclipse Platform3 focusing mostly on Java4 programmers. It provides robust and
extensible architecture for listening to and processing native Eclipse events.

1.1 Domain Model

For better understanding of the analyzed software we briefly describe selected entities:

Activator Activates Eclipse plug-in, Eclipse class.
Core Service Holds a Provider and a Manager.
Executor Executes a Runnable in a thread, standard Java class.
Listener Listens to events propagated by Resources.
Lookup Reflective utility used to instantiate Registrables.
Manager Manages registration and unregistration of Registrables.
Native Listener Listens to events on Native Objects, Eclipse interface.
Native Object Produces events, Eclipse object.
Provider Resolves Registrable implementation types and instances.
Registrable Either a Resource or a Listener.
Resource Wrapper around a Native Object, propagates events to Listeners.
Runnable Executable fragment, standard Java interface.
Services Loader Loads Core Services at startup.
Services Snapshot Snapshots Core Services state.
Watcher Service Responsible for event persistence.
Watcher Operation Notifies Watcher Service about an event.

1 PerConIK Eclipse Integration: http://perconik.github.io
2 PerConIK Research Project: http://perconik.fiit.stuba.sk
3 Eclipse Platform: http://eclipse.org
4 Java Programming Language: http://oracle.com/technetwork/java

1

http://perconik.github.io
http://perconik.fiit.stuba.sk
http://eclipse.org
http://oracle.com/technetwork/java

2 Model Diagrams

We selected several interesting parts of the system and visualized their workings in modeling
diagrams – use case, sequence, activity and state – spread across whis chapter.

2.1 Use Case Diagrams

2.1.1 Eclipse Startup

Eclipse startup use case diagram in figure 2.1 represents processes that handle initialization
and registration of resources and their respectful listeners. It also represents interaction
between User Activity Central Application1 (UACA) Extension and Eclipse APIs for
registering native listeners and loading user’s preferences for accessing serialized listeners
and resources from previous Eclipse session. List of use cases is summarized in table 2.1.

Table 2.1: Use cases at Eclipse Startup

Id. Name Description
UC00 Eclipse Startup Programmer starts Eclipse IDE
UC01 Activate Core Extension Eclipse activates PerConIK Core plug-ins
UC02 Activate UACA Extension Eclipse activates PerConIK UACA plug-ins
UC03 Load Preferences Core plug-in loads preferences
UC04 Deserialize Resources Core plug-in deserializes resources
UC05 Deserialize Listeners Core plug-in deserializes listeners
UC06 Resolve Resources Core plug-in resolves active resources
UC07 Resolve Listeners Core plug-in resolves active listeners
UC08 Provide Default Resources Core plug-in obtains known resources
UC09 Provide Default Listeners Core plug-in obtains known listeners
UC10 Provide UACA Listeners UACA plug-in obtains knows listeners
UC11 Register Resources Core plug-in registers active resources
UC12 Register Listeners Core plug-in registers active listeners
UC13 Register Native Listeners Core plug-in registers native listeners via Eclipse

Platform APIs

1 User Activity Central Application: http://github.com/perconik/uaca

2

http://github.com/perconik/uaca

Figure 2.1: Use Case Diagram – Eclipse Startup

2.1. Use Case Diagrams

2.1.2 Eclipse Shutdown

Use case diagram for Eclipse shutdown in figure 2.2 depicts interaction between UACA
Extension and Core Extension for Eclipse APIs. When user decides to exit Eclipse, the
Core Extension has to deactivate itself and unregister every registered listener and it’s
respectful resources. Before exiting Eclipse completely, Core Extension needs to save
preferences in order to reinitialize environment when Eclipse starts next time and reload
serialized resources and listeners. List of all use cases for Eclipse Shutdown is summarized
in table 2.2.

Table 2.2: Use cases at Eclipse Shutdown

Id. Name Description
UC20 Eclipse Shutdown Programmer exits Eclipse
UC21 Deactivate Core Extension Eclipse deactivates PerConIK Core plug-ins
UC22 Deactivate UACA Extension Eclipse deactivates PerConIK Core plug-ins
UC23 Save Preferences Core plug-in saves preferences
UC24 Serialize Resources Core plug-in serializes resources
UC25 Serialize Listeners Core plug-in serializes listeners
UC30 Unregister Resources Core plug-in unregisters active resources
UC31 Unregister Listeners Core plug-in unregisters active internal listeners
UC32 Unregister UACA Listeners Core plug-in unregisters active UACA listeners
UC33 Unregister Native Listeners Core plug-in registers active native listeners via

Eclipse APIs

4

Figure 2.2: Use Case Diagram – Eclipse Shutdown

2.1. Use Case Diagrams

2.1.3 Event Processing

Programmer’s activity and interaction with Eclipse resources (e.g documents or source
trees) generates events on those resources. Every resource provides a way of registering
listeners for such events. Use case diagram for Event Processing in figure 2.3 represents
how are these events processed by the Core and UACA Extensions and shows a real
example of a registered generic UACA Listener.

Processing of every event requires that events is, as first, propagated to other listeners.
Every listener then processes data of the native event object – it builds an event data
structure and send it for further processing. Service resolution reporting while UACA
persists data is a necessary step for managing full-stack cooperation between UACA
Extension and Core Extension for Eclipse APIs. List of use case diagrams for Event
Processing is summarized in table 2.3.

Table 2.3: Use cases of Event Processing

Id. Name Description
UC40 Interact with IDE Programmer’s interacts with Eclipse IDE
UC41 Generate Event Eclipse Native Object generates an event
UC42 Propagate Event Eclipse Native Listener propagates an event to

UACA Listener
UC43 Handle Event UACA Listener handles propagated event
UC44 Process Event Data UACA Listener processes event data
UC45 Build Event Data UACA Listener builds event data transfer object
UC46 Send Event Data UACA Listener sends event data
UC50 Register UACA Listener Core plug-in registers UACA Listener
UC51 Register Native Listeners Core plug-in registers a native listener for the

UACA Listener
UC60 Resolve Service UACA plug-in resolves Activity Watcher Service
UC61 Report Service Failure UACA plug-in reports Activity Watcher Service

failure
UC62 Log Service Error UACA plug-in logs Activity Watcher Service error
UC63 Log Processed Event UACA plug-in logs processed event
UC70 Display Event Data in Ac-

tivity Cache
UACA displays event data in Activity Cache

UC71 Persist Event Data UACA persists event data into remote storage

6

Figure 2.3: Use Case Diagram – Event Processing

2.2. Sequence Diagrams

2.2 Sequence Diagrams

2.2.1 Eclipse Startup

Sequence diagram for Eclipse Startup in figure 2.4 represents loading and resolution of
Core Services – Resource Service and Listener Service. Both services are started (or
stopped on exit) asynchronously in another thread utilizing a Services Snapshot instance.

8

Figure 2.4: Sequence Diagram – Eclipse Startup

2.2. Sequence Diagrams

2.2.2 Registering Listeners on Startup

Sequence diagram for Registering Listeners on Startup in figure 2.5 shows how each listener
is provided and then registered to it’s respectful resources utilizing listener provider and
manager instances. The provider provides a listener implementation class and manager
handles the registration of a listener instance.

10

Figure 2.5: Sequence Diagram – Registering Listeners on Startup

2.2. Sequence Diagrams

2.2.3 Listener Resolution

Sequence diagram for Listener Resolution in figure 2.6 represents how a listener instance
is resolved for a particular listener type. Listener provider provides the listener instance
similarly to a standard Flyweight. Therefore, if a listener implementation class and the
actual instance for the listener type are already resolved, it provides them from cache.
Otherwise, as we can see in alt block in figure 2.6, the listener is resolved using delayed
lookup based on reflection for resolving class instances using reflective accessors at runtime
on the listener implementation class.

12

Figure 2.6: Sequence Diagram – Listener Resolution

2.2. Sequence Diagrams

2.2.4 Listener Registration

Sequence diagram for Listener Registration in figure 2.7 represents a process of how a
listener is registered. Listener manager is responsible for registering the listener for every
registrable (suitable) resource. Listener itself provides standard hooks for handling logic
before and after registering on the registrable resource.

14

Figure 2.7: Sequence Diagram – Listener Registration

2.2. Sequence Diagrams

2.2.5 Commit Event Processing

Sequence diagram for Commit Event Processing in figure 2.8 depicts a real example of a
registered listener in action. Commit listener hooks for every event that is produced by
changed or newly created reference on a Git2 repository. The listener filters and processes
events, builds event data transfer objects and finally sends these data objects wrapped as
a Watcher Service Operation to be persisted by the Watcher Service.

2 Git: http://git-scm.org

16

http://git-scm.org

Figure 2.8: Sequence Diagram – Commit Event Processing

2.2. Sequence Diagrams

2.2.6 Watcher Service Operation Execution

Sequence diagram for Watcher Service Operation Execution in figure 2.9 shows how is
the Watcher Service instance resolved (and remembered for subsequent use) and used to
perform the operation to send event data to UACA in another thread provided by an
executor.

18

Figure 2.9: Sequence Diagram – Watcher Service Operation Execution

2.3. Activity Diagrams

2.3 Activity Diagrams

2.3.1 Git Committing

Activity diagram for Git Commiting in figure 2.10 shows how events concerning reference
changes on a Git repository are handled by Commit Listener. API for JGit3 in Eclipse
generates an event and Commit Listener handles the event further by processing reference
change event, building and sending the event data. The listener ca also be unregistered if
requested to.

3 JGit: http://eclipse.org/jgit

20

http://eclipse.org/jgit

Figure 2.10: Activity Diagram – Git Committing

2.3. Activity Diagrams

2.3.2 Document Editing

Activity diagram for Document Editing in figure 2.11 represents a flow of events processing
that are fired when the programmer interacts with a source code document. When
programmer opens a document, the Core Extension registers respectful document listeners.
These document listeners then listen for every change on the document and when the
programmer closes the document, the Core Extension unregisters all these listeners.

22

Figure 2.11: Activity Diagram – Document Editing

2.4. State Diagrams

2.4 State Diagrams

2.4.1 Listener Service Lifecycle

State diagram for Listener Service Lifecycle in figure 2.12 depicts a complete life cycle of
a listener service instance. It is notable that the service runs in a separate thread and
therefore any access or requests to it will surely fail if not running, hence there are no
operations available on states other than Running.

24

Figure 2.12: State Diagram – Listener Service Lifecycle

2.4. State Diagrams

2.4.2 Listener Lifecycle

State diagram for Listener Lifecycle in figure 2.13 shows a complete life cycle of a listener
instance. As soon as the listener instance is resolved it can be registered. Listener
registration is a bit complicated process covered by a sequence of important states with
appropriate actions. After successful registration the listener enters a state where it listens
(and further processes) to events or is requested for unregistration. Listener unregistration
is a very similar process as registration.

26

Figure 2.13: State Diagram – Listener Lifecycle

3 Design Patterns

In our analysis we identified and carefully selected several design patterns and visualized
them in diagrams across this chapter. Most of them are recognized as classic design
patterns [4], others may be Java specific, e.g. Enum Singleton [3], or adopted from other
languages like Optional which is a very common feature of functional languages.

Patterns in this chapter are structured by features of the analyzed software system
and it is common to depict more than one pattern on a single diagram. Therefore there is
a complete catalog of recognized patterns is in section 3.1 for easier orientation in this
document.

We also visualized an almost complete overview of the software system in a component
digram in figure 3.2 for even easier orientation.

3.1 Pattern Catalog

List of recognized design patterns according to [4]:

Pattern Mention
Builder 3.3, 3.13
Abstract Factory 3.4, 3.8, 3.9
Facade 3.5
Flyweight 3.7
Composite 3.7, 3.14
Memento 3.6
Proxy 3.8
Singleton 3.8, 3.15
Strategy 3.10, 3.11, 3.12

List of recognized Java specific patterns as proposed in [3] and some other well known
patterns:

Pattern Mention
Enum Singleton 3.9, 3.12, 3.14
Optional 3.15
Null Object 3.15
Serialization Proxy 3.6

28

3.2. Component Overview

3.2 Component Overview

Accompanying component diagrams depict usage connection among Core APIs in figure
3.1, and UACA APIs and Core Java DOM APIs (actually part of Core, but currently not
completely utilized) in figure 3.2.

29

Figure 3.1: Component Diagram – Core Overview

Figure 3.2: Component Diagram – UACA and Java DOM Overview

3.3. Core Services

3.3 Core Services

Overview of supplied Core Services type hierarchy.

3.3.1 Builder

According to [4] the abstract builders in figure 3.3 are represented by AbstractGener-
icBuilder and its two direct descendants named AbstractBuilder contained in Abstrac-
tResourceService and AbstractListenerService as inner classes. Concrete builders are
two implementations named Builder, both inner classes of StandardResourceService and
StandardListenerService and thus maintaining similar type hierarchy and structure.

Abstract product is AbstractGenericService – the direct descendant of the AbstractSer-
vice. Concrete products are StandardResourceService and StandardListenerService. The
director is missing in this diagram, but we can safely assume that it is an instance of the
ServiceLoader class.

Note that this builder patter design is effectively used to preserve immutability amongst
its products [3].

32

Figure 3.3: Class Diagram – Core Services Builders Type Hierarchy

3.4. Core Factories

3.4 Core Factories

Overview of the extensive Core architecture – pluggable factories.

3.4.1 Abstract Factory

We provided a complex type hierarchy of abstract factories – interfaces as in the diagram
center in figure 3.4. As specified in [4] we further introduced concrete factory implemen-
tations such as RegisteredResourcesSupplier. Abstract products and concrete products
are not shown in the diagram but examples include ListenerProvider, ListenerManager,
ListenerService and more. The client is naturally represented by the ServiceLoader class
which utilizes concrete implementations of AbstractExtensionProcessor as the real clients.

34

Figure 3.4: Class Diagram – Core Factories

3.5. Core Facades

3.5 Core Facades

Main Core API overview.

3.5.1 Facade

According to [4], Resources, Services and Listeners are facades, everything in the diagram
in figure 3.5 above them are client classes and everything below them are subsystem
interfaces (actual implementations are omitted). See example 3.1 showing sample parts
the Listeners class.

Example 3.1: Listeners facade as an access to core services

1 public final class Listeners {
2 private Listeners() {}
3
4 static ListenerService service() {
5 return Services.getListenerService();
6 }
7
8 static ListenerProvider provider() {
9 return service().getListenerProvider();

10 }
11
12 static ListenerManager manager() {
13 return service().getListenerManager();
14 }
15
16 public static Listener forClass(final Class<? extends Listener> type) {
17 return provider().forClass(type);
18 }
19
20 public static void register(final Listener listener) {
21 manager().register(listener);
22 }
23
24 public static void registerAll(final Listener ... listeners) {
25 registerAll(Arrays.asList(listeners));
26 }
27
28 ...
29
30 public static void unregister(final Listener listener) {
31 manager().unregister(listener);
32 }
33
34 public static void unregisterAll() {
35 unregisterAll(Listener.class);
36 }
37
38 public static void unregisterAll(final Class<? extends Listener> type) {
39 manager().unregisterAll(type);
40 }
41
42 public static Collection<Listener> registered() {
43 return registered(Listener.class);
44 }
45
46 public static <L extends Listener> Collection<L> registered(final Class<L> type) {
47 return manager().registered(type);
48 }
49
50 public static SetMultimap<Resource<?>, Listener> registrations() {
51 return manager().registrations();
52 }
53
54 ...
55 }

36

Figure 3.5: Class Diagram – Core Facades

3.6. Core Persistence

3.6 Core Persistence

3.6.1 Memento

As described in [4] a memento in figure 3.6 is ListenerPersistenceData. Originator is
RegisteredListenersSupplier and caretaker is an impelmentation of IPreferenceStore (an
interface from Eclipse Preference API), both originator and caretaker are not shown in
class the diagram. There is a paralel hierarchy for resources (with some interface and
implementation differences).

3.6.2 Serialization Proxy

Both SerializationProxy classes in figure 3.6 are serialization proxies as popularized by [3].
Serialization proxy helps to maintain real immutability, forced by final modifier on fields
of a real subject, in terms of deserialization (deserialization mechanism constructs objects
in Java by avoiding constructors and hence the class can not perform precondition checks
on deserialized values at instantiation). See an implementation of a SerializationProxy in
example 3.2.

According to [4] a serialization proxy is a protection proxy as it helps protecting real
subjects from malicious deserialization attacks. Real subject is ListenerPersistenceData
and subject is SerializedListenerData, similarly with resources.

Example 3.2: SerializationProxy as a protection for ListenerPersistenceData

1 private static final class SerializationProxy implements Serializable {
2 private static final long serialVersionUID = -6638506142325802066L;
3
4 private final boolean registered;
5
6 private final String implementation;
7
8 private final Optional<Listener> listener;
9

10 private SerializationProxy(final ListenerPersistenceData data) {
11 this.registered = data.hasRegistredMark();
12 this.implementation = data.getListenerClass().getName();
13 this.listener = data.getSerializedListener();
14 }
15
16 static SerializationProxy of(final ListenerPersistenceData data) {
17 return new SerializationProxy(data);
18 }
19
20 private Object readResolve() throws InvalidObjectException {
21 try {
22 return construct(this.registered, Utilities.resolveClassAsSubclass(this.implementation, Listener.

class), this.listener.orNull());
23 } catch (Exception e) {
24 throw new InvalidListenerException("Unknown deserialization error", e);
25 }
26 }
27 }

38

Figure 3.6: Class Diagram – Code Persistence

3.7. Core Listener Provider

3.7 Core Listener Provider

A view of standard listener provider and UACA listener implementations.

3.7.1 Composite

In figure 3.7 ListenerProvider is a component, StandardListenerProvider is composite,
SystemListenerProvider is a leaf (not shown in diagram), and ListenerService is the client
as defined in [4]. Each composite can hold up to one component accessible via the parent()
method.

3.7.2 Flyweight

According to [4] as seen in figure 3.7, Listener is a flyweight, ListenerService is a client,
StandardListenerProvider is a flyweight factory, and subclasses of IdeListener (depicted at
the bottom of the diagram) are concrete flyweights. See example 3.3 for an implementation
of flyweight factory.

Example 3.3: StandardListenerProvider as an implementation of flyweight factory

1 final class StandardListenerProvider extends AbstractListenerProvider {
2 ...
3
4 StandardListenerProvider(final Builder builder) {
5 this.map = HashBiMap.create(builder.map);
6 this.cache = Maps.newConcurrentMap();
7 this.parent = builder.parent.or(ListenerProviders.getSystemProvider());
8 }
9

10 ...
11
12 public <L extends Listener> L forClass(final Class<L> type) {
13 Listener listener = this.cache.get(cast(type));
14
15 if (listener != null) {
16 return type.cast(listener);
17 }
18
19 L instance;
20
21 try {
22 instance = StaticListenerLookup.forClass(type).get();
23 } catch (ReflectionException e) {
24 Throwable[] suppressions = e.getSuppressed();
25
26 Exception cause;
27
28 if (suppressions.length == 1 && suppressions[0] instanceof AccessorConstructionException) {
29 cause = new IllegalListenerClassException(suppressions[0]);
30 } else {
31 cause = new ListenerInstantiationException(e);
32 }
33
34 return this.parentForClass(type, cause);
35 }
36
37 if (!this.map.containsValue(type)) {
38 this.map.put(type.getName(), type);
39 }
40
41 this.cache.put(type, instance);
42
43 return instance;
44 }
45
46 ...
47 }

40

Figure 3.7: Class Diagram – Core Listener Provider

3.8. Core Utilities

3.8 Core Utilities

Several Core helpers.

3.8.1 Abstract Factory

In figure 3.8 PluginConsoleFactory and DebugConsoleFactory are abstract factories, De-
bugConsole.Factory is a concrete factory, PluginConsole is an abstract product and
DebugConsole is a concrete product as specified in [4].

3.8.2 Enum Singleton

In figure 3.8 DebugConsole.Factory is an enum singleton as popularized by [3].
Note that enums in Java are actually objects, i.e. State.RUNNING is a real object.

Also note that enums, such as State, can have abstract methods and their instances, e.g.
RUNNING, are the respective implementations.

3.8.3 Proxy

In figure 3.8 IdeActivityConsole is a virtual proxy as described in [4], PluginConsole is
subject and StandardPluginConsole is most likely the real subject.

3.8.4 Singleton

In figure 3.8 IdeActityConsole is a singleton held by a static class field and accessible via
the getInstance() method as described in [4].

42

Figure 3.8: Class Diagram – Core Utilities

3.9. Java DOM Compatibility

3.9 Java DOM Compatibility

Java DOM Compatibility API overview.

3.9.1 Abstract Factory

In figure 3.9 NodeFactory and TreeFactory are abstract factories, StandardNodeFactory
and StandardTreeFactory are concrete factories, ASTNode and AST are products (both
part of Eclipse JDT API, not shown on the diagram) as specified in [4].

3.9.2 Enum Singleton

In figure 3.9 StandardNodeFactory is an enum singleton as popularized by [3].
Note that enums in Java are actually objects, see section 3.8.2 for more details.

44

Figure 3.9: Class Diagram – Java DOM Compatibility

3.10. Java DOM Node Paths

3.10 Java DOM Node Paths

Java abstract syntax tree node paths API illustration.

3.10.1 Strategy

In figure 3.10 Function is a strategy, PathNameStrategy.NAME and PathNameStrat-
egy.TYPE are concrete strategies, and NodePathExtractor is the context, as defined in
[4]. See example 3.4 showing the implementation of mentioned DOM node path naming
starategies.

Note that PathNameStrategy.NAME and PathNameStrategy.TYPE are objects, i.e.
singleton-like implementations of the Function interface, see 3.8.2 for more details on Java
enums.

Example 3.4: PathNameStrategy as a namespace for node path naming strategies

1 private enum PathNameStrategy implements Function<ASTNode, String> {
2 NAME {
3 public String apply(final ASTNode node) {
4 if (node == null) {
5 return unknownPathName;
6 }
7
8 for (StructuralPropertyDescriptor descriptor: Nodes.structuralProperties(node)) {
9 if (descriptor.getId().equals("name")) {

10 return node.getStructuralProperty(descriptor).toString();
11 }
12 }
13
14 return unknownPathName;
15 }
16
17 @Override
18 public String toString() {
19 return "name";
20 }
21 },
22
23 TYPE {
24 public String apply(final ASTNode node) {
25 return node != null ? NodeType.valueOf(node).getName() : unknownPathName;
26 }
27
28 @Override
29 public String toString() {
30 return "type";
31 }
32 };
33 }

46

Figure 3.10: Class Diagram – Java DOM Node Paths

3.11. Java DOM Node Filters

3.11 Java DOM Node Filters

Java abstract syntax tree node filters API illustration.

3.11.1 Strategy

In figure 3.11 Predicate is a strategy, and IsMatchingPredicate and IsInstancePredicate are
concrete strategies and also themselves context objects, as defined in [4].

48

Figure 3.11: Class Diagram – Java DOM Node Filters

3.12. Java DOM Node Transformations

3.12 Java DOM Node Transformations

Java abstract syntax tree node transformations API illustration.

3.12.1 Enum Singleton

Both ToRootFunction and ToParentFunction in figure 3.12 are enum singletons as popu-
larized by [3].

Note that enums in Java are actually objects, see section 3.8.2 for more details.

3.12.2 Strategy

Function and Predicate are strategies, direct descendants of InternalFunction and singletons
ToRootFunction and ToParentFunction are concrete strategies, and ASTNode is the context
obeject (part of the Eclipse JDT API, not shown on the diagram), as defined in [4].

50

Figure 3.12: Class Diagram – Java DOM Node Transformations

3.13. Reflective Lookup

3.13 Reflective Lookup

Simple reflection utility effectively used to resolve instances at runtime.

3.13.1 Builder

According to [4] we can immediately spot the abstract builder and concrete builder
in figure 3.13. Abstract product is the AbstractLookup and concrete product is the
DelayedLookup. See example 3.5 for an implementation of AbstractBuilder.

Note that this builder patter design is effectively used to preserve immutability amongst
its products [3].

Example 3.5: AbstractBuilder as a skeletal implementation for AbstractLookup builders

1 static abstract class AbstractBuilder<T> {
2 final List<Accessor<? extends T>> accessors;
3
4 final List<Throwable> suppressions;
5
6 public AbstractBuilder() {
7 this.accessors = Lists.newArrayListWithExpectedSize(8);
8 this.suppressions = Lists.newArrayListWithExpectedSize(8);
9 }

10
11 final void add(Accessor<? extends T> accessor) {
12 this.accessors.add(Preconditions.checkNotNull(accessor));
13 }
14
15 final void handle(Throwable e) {
16 Throwables.propagateIfInstanceOf(e, NullPointerException.class);
17
18 this.suppressions.add(e);
19 }
20
21 public abstract AbstractLookup<T> build();
22 }

52

Figure 3.13: Class Diagram – Reflective Lookup

3.14. Class Resolvers

3.14 Class Resolvers

Wrapper around standard Java and Eclipse class loading mechanisms to unify their
interfaces.

3.14.1 Composite

In figure 3.14 ClassResolver is a component, CompositeClassResolver is composite, Bundle-
ClassResolver, DefaultClassResolver and LoadingClassResolver are leafs, as defined in [4].
See example 3.6 for an implementation of composite class resolver.

Note that components can not be obtained from the composite.

Example 3.6: CompositeClassResolver as a root of composable class resolving mechanism

1 final class CompositeClassResolver implements ClassResolver {
2 private final List<ClassResolver> resolvers;
3
4 CompositeClassResolver(Iterable<ClassResolver> resolvers) {
5 this.resolvers = ImmutableList.copyOf(resolvers);
6
7 Preconditions.checkArgument(!this.resolvers.isEmpty());
8 }
9

10 public Class<?> forName(String name) throws ClassNotFoundException {
11 List<Throwable> suppressions = Lists.newLinkedList();
12
13 for (ClassResolver resolver: this.resolvers) {
14 try {
15 return resolver.forName(name);
16 } catch (Exception e) {
17 suppressions.add(e);
18 }
19 }
20
21 ClassNotFoundException failure = new ClassNotFoundException(name + " not found");
22
23 throw MoreThrowables.initializeSuppressor(failure, Lists.reverse(suppressions));
24 }
25 }

3.14.2 Enum Singleton

In figure 3.14 DefaultClassResolver is an enum singleton as popularized by [3]. See
example 3.7 for an implementation of enum singleton.

Note that enums in Java are actually objects, see section 3.8.2 for more details.

Example 3.7: DefaultClassResolver as an enum singleton

1 enum DefaultClassResolver implements ClassResolver {
2 INSTANCE;
3
4 public Class<?> forName(String name) throws ClassNotFoundException {
5 return Class.forName(name);
6 }
7
8 @Override
9 public String toString() {

10 return "DefaultClassResolver";
11 }
12 }

54

Figure 3.14: Class Diagram – Class Resolvers

3.15. Optionals

3.15 Optionals

Very popular pattern mostly seen in functional languages and recently introduced as a
part of Java 8 Standard Library. The class diagram in figure 3.15 shows an Optional
from the Guava Library 1 and Exceptional which is our own approach. Optional holds a
reference to an object on success or null on failure in comparison to Exceptional which
holds a reference to an object on success or a reference to an exception on failure.

3.15.1 Null Object

In figure 3.15 Optional.Absent is a classic example of a null object pattern.

3.15.2 Optional

In figure 3.15 Optional and Exceptionl are design patterns themselves. Optionals are useful
when there is an explicit need to substitute possible nulls with real references which is very
useful when designing comprehensive APIs. Another sample usage for optionals is that
they force API clients to always check whether they received or pass a reference or null.

3.15.3 Singleton

In figure 3.15 Optional.Absent is a singleton held by a static class field and accessible via
the whthType() method in a package-private scope, similarly as described in [4].

1 Guava Library: http://code.google.com/p/guava-libraries

56

http://code.google.com/p/guava-libraries

Figure 3.15: Class Diagram – Optionals

4 Conclusion

In our work, we analyzed selected features of a system for acquisition and persistence of
programmer’s activity in Eclipse IDE. In use case modeling diagrams, we focused on three
major processes in the system – startup and shutdown of Eclipse and event processing. In
sequence modeling diagrams, we mainly analyze and model actions required for loading
resources, their respectful listeners with focus on dynamic lookup of listener instances
along with their registration on specific resources. Since listeners and services for their
registration are essential part of the architecture, we provide two state diagrams modeling
states of listener and listener service life cycle. Design of the system architecture is based
on substantial amount of design patterns covering patterns such as Abstract Factory,
Builder, Flyweight, Memento, and more.

This analysis is a part of the research project PerConIK at Faculty of Informatics and
Information Technologies at Slovak University of Technology in Bratislava. Presented
system is currently in production use as a component for programmer’s activity acquisition
included in a larger framework for complex platform independent software development
monitoring [1].

58

Bibliography

[1] Mária Bieliková, Polášek Ivan, Michal Barla, Eduard Kuric, Rástočný Karol, Jozef
Tvarožek, and Peter Lacko. Platform Independent Software Development Monitoring:
Design of an Architecture. SOFSEM 2014: Theory and Practice of Computer Science,
8327:126–137, 2014.

[2] Mária Bieliková, Pavol Návrat, Daniela Chudá, Ivan Polášek, Michal Barla, Jozef
Tvarožek, and Michal Tvarožek. Webification of Software Development: General
Outline and the Case of Enterprise Application Development. Global Journal on
Technology, Vol 3 (2013): 3rd World Conference on Information Technology (WCIT-
2012), 03:1157–1162, 2013.

[3] Joshua Bloch. Effective Java (2nd Edition). The Java Series. Prentice Hall PTR,
Upper Saddle River, NJ, USA, second edition, 2008.

[4] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, MA, 1995.

59

	Introduction
	Domain Model

	Model Diagrams
	Use Case Diagrams
	Eclipse Startup
	Eclipse Shutdown
	Event Processing

	Sequence Diagrams
	Eclipse Startup
	Registering Listeners on Startup
	Listener Resolution
	Listener Registration
	Commit Event Processing
	Watcher Service Operation Execution

	Activity Diagrams
	Git Committing
	Document Editing

	State Diagrams
	Listener Service Lifecycle
	Listener Lifecycle

	Design Patterns
	Pattern Catalog
	Component Overview
	Core Services
	Builder

	Core Factories
	Abstract Factory

	Core Facades
	Facade

	Core Persistence
	Memento
	Serialization Proxy

	Core Listener Provider
	Composite
	Flyweight

	Core Utilities
	Abstract Factory
	Enum Singleton
	Proxy
	Singleton

	Java DOM Compatibility
	Abstract Factory
	Enum Singleton

	Java DOM Node Paths
	Strategy

	Java DOM Node Filters
	Strategy

	Java DOM Node Transformations
	Enum Singleton
	Strategy

	Reflective Lookup
	Builder

	Class Resolvers
	Composite
	Enum Singleton

	Optionals
	Null Object
	Optional
	Singleton

	Conclusion
	References

